

Entre médicos e algoritmos: decisões automatizadas na área da saúde

- 19 28/7 QUA 19 H
- youtube.com/nicbrvideos

FVFNTO ON-LINE

APRESENTAÇÃO

Lara Rocha Garcia

Graduada em Direito e Comunicação (Mackenzie e Unesp)

Visiting Scholar na Columbia Law School

Doutoranda em Direito Político e Econômico – Inteligência Artificial (Mackenzie)

Mestre em Direito Político e Econômico – Inovação e Saúde (Mackenzie)

Especialista em Leadership, Innovation and Entrepreneurship por Stanford Graduate School of Business - Ignite Program.

Tem mais de 10 anos de experiência em inovação tendo atuado como Gerente do Innovation Lab no Hospital Albert Einstein e Head de Produtos do dr.consulta.

Autora de mais de 10 livros, artigos nacionais e internacionais.

Advogada e Prof de Direito Digital, Proteção de Dados, Inovação e Direito da Saúde.

© LEE SEDOL 00:36:35

Table 2. Physician and Symptom Checkers' Diagnostic Accuracy, Stratified by the Acuity Level and Prevalence of the Conditions Described by the Clinical Vignettes

Vignette Characteristic	No. (%)		Listed, % (95% CI)			
	Vignettes Completed by Human Dx Physicians	Vignettes Completed by Symptom Checkers	First		Тор 3*	
			Human Dx Physicians	Symptom Checkersh	Human Dx Physicians	Symptom Checkers*
All vignettes	1105 (100)	770 (100)	72.1 (69.5-74.8)	34.0 (30.7-37.4)	84.3 (82.2-86.5)	51.2 (47.4-54.3)
Acuity level ^c						
High	398 (36.0)	263 (34.2)	79.1 (75.1-83.2)	24.3 (19.1-29.6)	89.2 (86.1-92.3)	39.5 (33.6-45.5)
Medium	376 (34.0)	260 (33.7)	70.7 (66.1-75.4)	37.7 (31.8-43.6)	84.3 (80.6-88.0)	56.9 (50.9-63.0)
Low	331 (30.0)	247 (32.1)	65.3 (60.1-70.4)	40.5 (34.3-46.7)	78.5 (74.1-83.0)	57.5 (51.3-63.5)
Vignette prevalence ^a						
Common	639 (57.8)	457 (59.4)	69.6 (66.1-73.2)	38.1 (33.6-42.5)	83.3 (80.4-86.2)	55.6 (51.6-60.7)
Uncommon	466 (42.2)	313 (40.6)	75.5 (71.6-79.5)	28.1 (23.1-33.1)	85.8 (82.7-89.0)	44.7 (38.4-49.3)

Totals may not add up to 100% owing to rounding.

"We defined "common" diagnoses as those that accounted for more than 0.3% of ambulatory visits (or >3 764 082 visits) in the United States in 2009 to 2010. These totals were compiled from data gathered by the Centers for Disease Control and Prevention, the National Ambulatory Medical Care Survey, and the National Hospital Ambulatory Medical Care Survey. Differences across physicians and across symptom checkers for this category were statistically significant (P < .05) except for the difference between the rate that physicians listed the correct diagnosis in the top 3 for common vs uncommon vignettes.

Discussion | In what we believe to be the first direct comparison of diagnostic accuracy, physicians vastly outperformed computer algorithms in diagnostic accuracy (84.3% vs. 51.2% correct diagnosis in the top 3 listed). Despite physicians' superior performance, they provided the incorrect diagnosis in about 15% of cases, similar to prior estimates

^{*} P<.001 for all comparisons between physicians and symptom checkers.

b Results described by Semigran et al. Full version of clinical vignettes available at: http://www.bmj.com/content/bmj/suppl/2015/07/07/bmj.h3480.DC1 /semh025489.wwl.pdf.

Acuity level of vignettes defined by Semigran et al.⁴ Differences across physicians and across symptom checkers for this category were statistically significant (P < .001).</p>

INDUSTRIAL AI APPLICATIONS

TRACTABLE

AKUR8

MANUFACTURING

d drishti

ILANDING AI

SMART

HOME

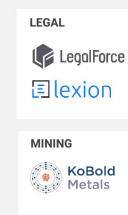
ORIGIN

CONSUMER

Audio Analytic

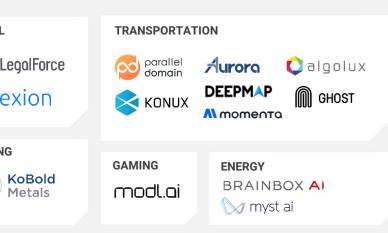
FRITZ.A

DEVICES



RETAIL & CPG

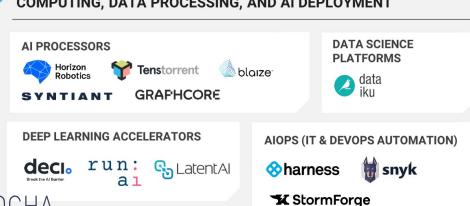
MSIGHT


CC Vue.ai°

syte

MEDIA

descript

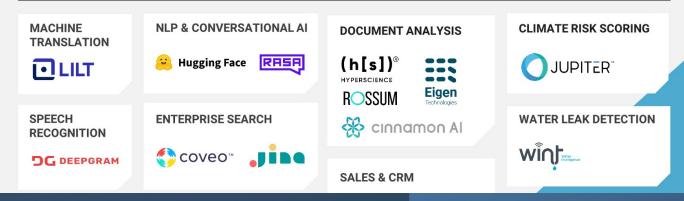


SUPPLY CHAIN & LOGISTICS

covariant OSARO

INCEPTIO Outrider

COMPUTING, DATA PROCESSING, AND AI DEPLOYMENT

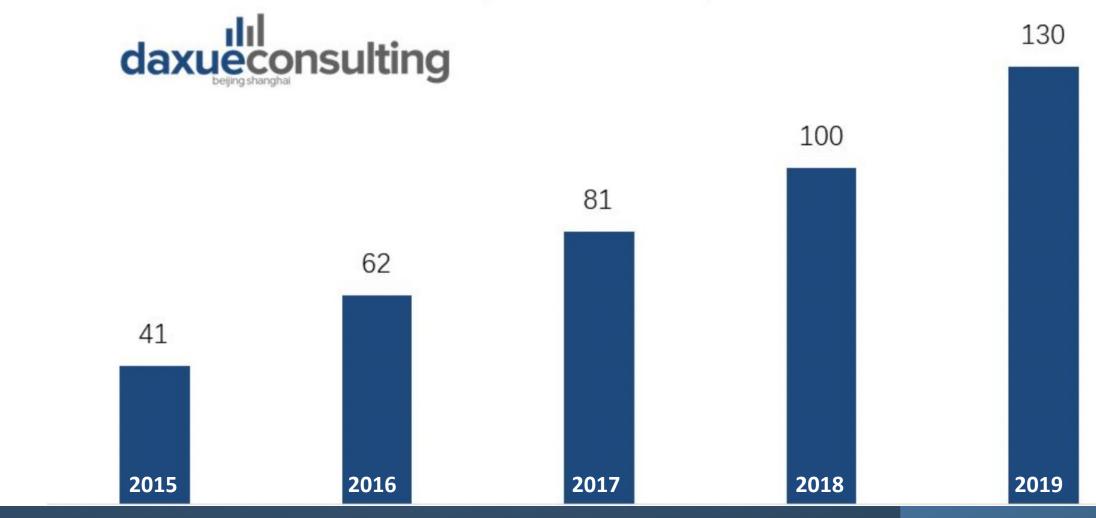


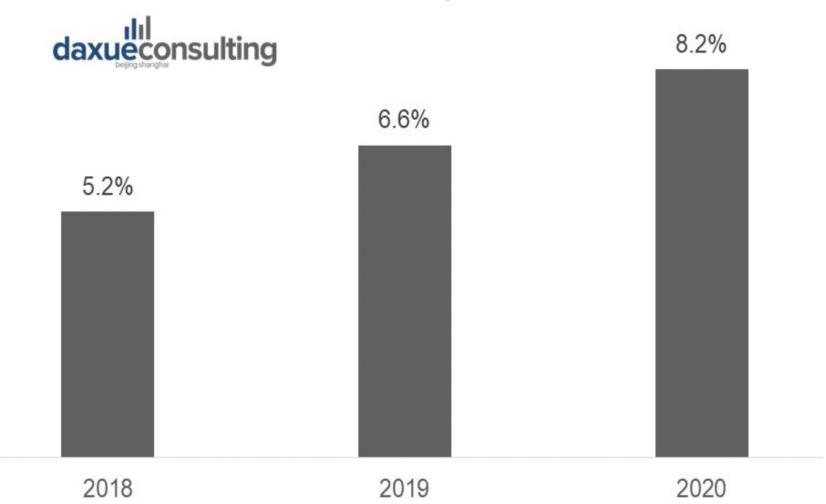
WASTE

MANAGEMENT

AMP ROBOTICS

greyparrot




Caption Health	Al-guided ultrasound	\$ 75
insitro	AI-powered drug R&D	\$ 643
Olive	RPA for hospitals	\$ 459
Overjet	AI-enabled dental imaging and claims review Federated learning for medical	\$ 8
Owkin	research	\$ 74
Recursion	AI-powered drug R&D	\$ 510
Theator	Surgical intelligence	\$ 21
Unlearn	Digital twin technology for clinical trials	\$ 15

Size of the telemedicine market in China (Million RMB)

tps://francesmarcellin.com/2017/12/13/this-telehealth-cabin-connects-qualified-doctors-with-patients-all-over-the-world/

WMA/ WHO/UN

2005: WHA 58.28 Resolution2006: eHealth Global Observatory2006: Building Foundations for eHealth2006: Project among USA, India and UM for

Telemedicine in Afeganistan **2009:** Nova Delhi Declaration

2009/2010: WHO: 2 reports with opportunities of

development in telemedicine **2012:** Frameworks for eHealth **2012:** National eHealth Strategy

2015: Moscou Declaration

2016: Atlas of eHealth country profiles: the use of eHealth in support of universal health coverage **2016:** Global diffusion of eHealth: making universal health coverage achievable: report of the third

global survey on eHealth

2018: Digital Me

2020: Data, Analytics and Delivery for Impact **2021:** Global Strategy on Digital Health

1997: Parecer nº 31/97: Petrobras consults CFM about offshore patients

1999: WMA: Tel Aviv Declaration

2001: Medical Act (CFM nº 1627/2001) **2002**: Parecer CFM nº 36/2002: *Telecare*

2002: CFM nº 1.638 e 1.639/2002 **2002**: **CFM № 1.643 Telemedicine**

2007: National Telehealth Programm (Portaria MS/GM

Nº 2.546)

2009: Teleradiology (CFM Nº 1.890)

2010: Código de Ética Médica **2013**: Emenda ao Ato Médico

2014: Estratégia de e-Saúde para o Brasil

2016: Marco Legal da Inovação

2018: Lei de Proteção de Dados Pessoais (LGPD)

2018: Decreto Marco Legal da Inovação

2018: Telemedicina

2019: Revogação da Telemedicina

2020: CFM № 1756/2020

2020: MS Nº 467/2020

2020: Projeto de Lei 696/2020

2020: Nota técnica ANS

Join Us

WHAT WE DO

POLICY

PUBLICATIONS

NEWS & PRESS

WHO WE ARE

JUNIOR DOCTORS

MEMBERS' AREA

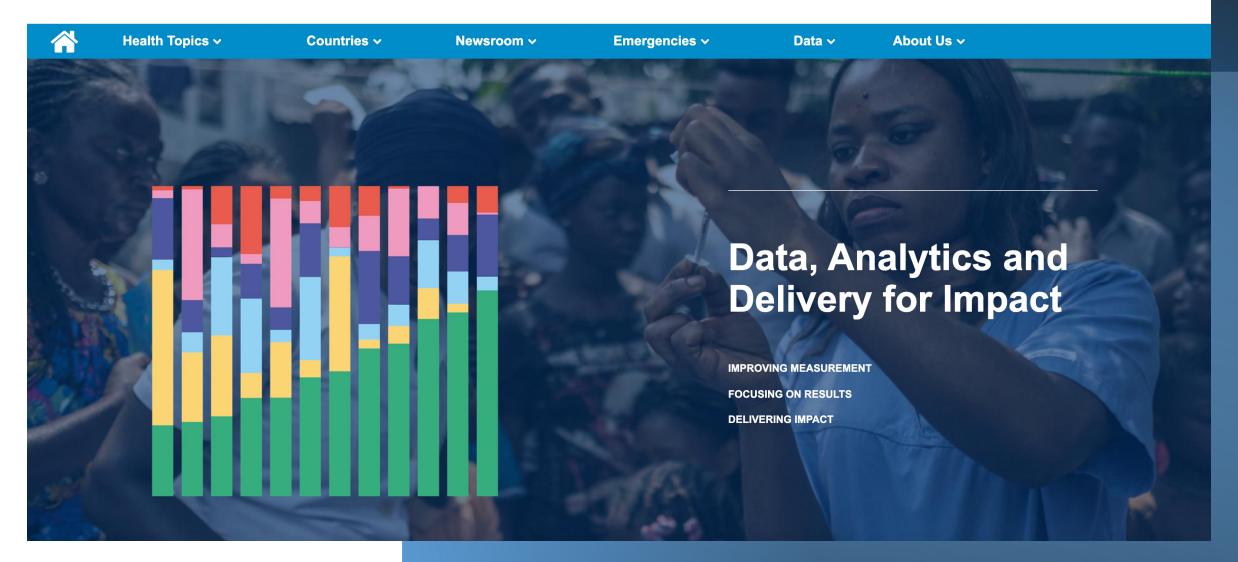
Policy / Current Policies / WMA Statement on Augmented Intelligence in Medical Care

WMA STATEMENT ON AUGMENTED INTELLIGENCE IN MEDICAL CARE

Adopted by the 70th WMA General Assembly, Tbilisi, Georgia, October 2019

26th November 2019

RECOMMENDATIONS


That the WMA:

- Recognize the potential for improving patient outcomes and physicians' professional satisfaction through the use of health care Al, provided they conform to the principles of medical ethics, confidentiality of patient data, and non-discrimination.
- Support the process of setting priorities for health care Al.
- Encourage the review of medical curricula and educational opportunities for patients, physicians, medical students, health administrators and other health care professionals to promote greater understanding of the many aspects, both positive and negative, of health care Al.

The WMA urges its member organizations to:

- Find opportunities to bring the practicing physician's perspective to the development, design, validation and implementation of health care AI.
- Advocate for direct physician involvement in the development and management of health care AI and appropriate government and professional oversight for safe, effective, equitable, ethical, and accessible AI products and services.
- Advocate that all healthcare Al systems be transparent, reproducible, and be trusted by both health care providers and patients.
- Advocate for the primacy of the patient-physician relationship when developing and implementing health care Al systems.

World Health Organization Data Principles

10 August 2020

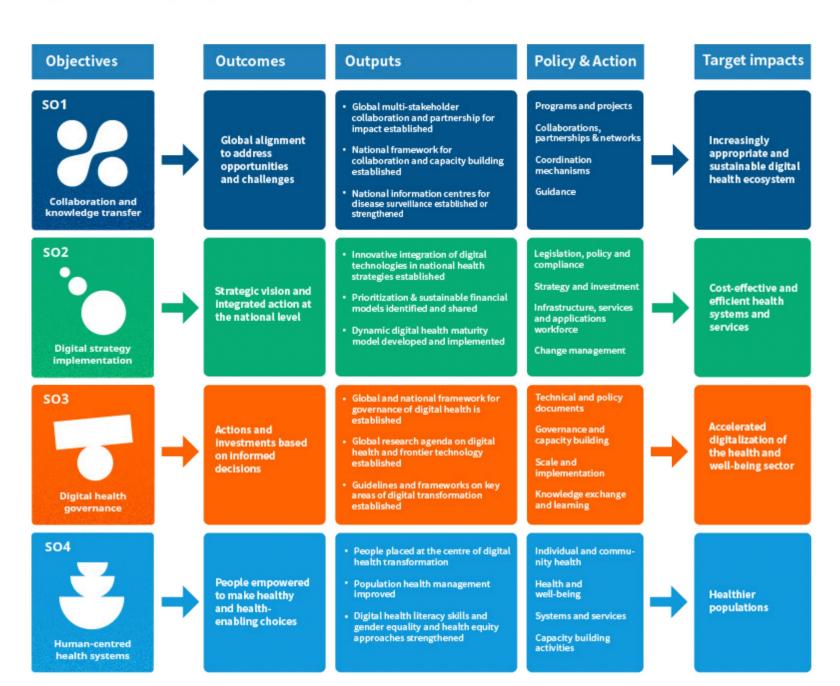
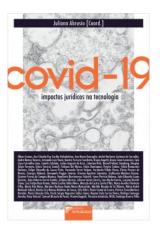

- 1. WHO shall treat data as a public good
- 2. WHO shall uphold Member States' trust in data
- 3. WHO shall support Member States' data and health information systems capacity
 - 4. WHO shall be a responsible data manager and steward

Fig. 1. Summary implementation of the action plan

https://cdn.who.int/media/docs/defaultsource/documents/gs4dhdaa2a9f352b0445bafbc79ca799d ce4d.pdf?sfvrsn=f112ede5 75



@LARAROCHA

LARAROCHAGARCIA@GMAIL.COM

